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Abstract 

Prototyping techniques play an important role in the software development process; they 

allow system designers to analyze a system in an early development stage. In this paper, 

we present a model of distributed implementation of LOTOS specification. More 

precisely, we present an approach for executing a distributed system, specified in 

LOTOS, on a fixed number of computers, each implementing a part of the specified 

system. Our model consists of three functional parts, the first handles the behavior of 

LOTOS specifications and the other two deal with synchronization. For the first part,  we 

use a set of trees to represent the parts of the specification which are executed at different 

sites. A tree reflects the dynamic relationship between active processes within a local 

system in view of their (local) synchronization. The second part deals with the dynamic 

relations for synchronization involving several interrelated sites. We use (virtual) rings to 

represent rendezvous relation among the trees on different sites. An algorithm for 

establishing these rings during the execution of a specification is presented. Based on 

these rings, the third part implements a distributed multi-way rendezvous algorithm, 

which provides the rendezvous synchrnoization required by the LOTOS semantics. This 

approach to the distributed implementation of LOTOS is symmetric, in the sense that all 

participating sites have equal roles. The paper also describes the implementation of this 

approach within a network of workstations. 

 

1. Introduction 

                                                 

1 This work was performed within the IDACOM-NSERC-CWARC Industrial Research 

Chair on Communication Protocols and was also supported by the Natural Sciences and 

Engineering Research Council of Canada under a strategic research grant, and the 

Ministry of Education of Quebec. 
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LOTOS [ISO 89][Bolo 87] is a formal description technique (FDT) which is standardized 

within International Standard Organization (ISO); it is intended for writing formal 

specifications of communication protocols and services of Open System Interconnection 

(OSI). It is also applicable to distributed systems. LOTOS is designed as an executable 

specification language. Execution of a specification plays an important role in the 

development process of software [Turn 89]. Some interpreters (or simulators) have been 

developed (e.g.[Bria 86] [Logr 88]) . They allow users to simulate the execution of a 

LOTOS specification and check whether it behaves correctly. However, it would be 

desirable to prototype a distributed system specified in LOTOS in a real distributed 

environment. This may allow users to analyze the system in an early development stage. 

However, little work has been done about execution of LOTOS specifications in a 

distributed environment.  

In this paper, we address the question of distributed implementation of LOTOS 

specifications. We mean by this an implementation of a distributed system specified in 

LOTOS involving a fixed number of sites and each implementing a part of the specified 

system. We assume that the different sites communicate by passing message through an 

underlying reliable communication medium. Two issues are particularly critical for such 

a distributed implementation. One is distributed implementation of multiple rendezvous, 

that is an algorithm or a protocol which is used to synchronize the LOTOS processes in a 

distributed environment. This is a fundamental issue in distributed computing. The other 

is the distributed execution model for LOTOS which allows a specification to be 

partitioned into more than one part, where each part is processed at a separate site, and 

links are established among these parts for synchronization. 

Certain features of the LOTOS language make the above issues difficult to realize.  In 

LOTOS, multi-way rendezvous is allowed and processes communicate through gates, 

thus a process may not know the other processes which synchronize on the same gate. 

LOTOS also allows dynamic creation of processes and gates, and the number of 

processes involved in a rendezvous at a given gate may change dynamically from one 

occurrence of a rendezvous to another. These features of LOTOS make a distributed 

implementation of LOTOS specifications difficult. 

The question of execution of LOTOS specification has been studied for several years. 

Some approaches presented in the literature try to directly translate LOTOS 

specifications into executable high level programming languages (e.g. Prolog [Logr 88], 

Parlog [Gilb 89]). Then the executions of LOTOS specifications depends on the 
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underlying high level programing languages. Some other works transform LOTOS 

specifications into abstract execution models, such as (finite) automata and trees, and 

later translate them into a system implement language such as C. 

Automata (finite) is a well accepted execution model. A translation of a subset of LOTOS 

to EFSM (Extended Finite State Machine) is described in [Karj 88]. It cannot support 

distributed implementation because a LOTOS specification is represented by a single 

state machine. This approach also suffers state explosion. The work presented in [Dubu 

89] tries to solve the state explosion problem by transforming a subset of LOTOS to 

multi-automata with ports: each automata represents a LOTOS process and ports 

represent the relation among LOTOS processes. This approach does support distributed 

implementation but the concept of ports used in this context is not suitable for the 

distributed control of synchronization. 

Tree-oriented execution models were proposed in [Boch 89c] [Wu 90] [Nomu 90] [Sist 

91]. In these models, tree structures represent parent-children process relationships in 

order to realize multi-way synchronization. The work of [Nomu 90] only considered a 

centralized implementation.  The formalism of [Wu 90]  supports  non well-guarded 

behavior expressions, and allows for parallel processing in loosely as well as closely 

coupled systems. The work of [Sist 91] considers the distributed implementation, where 

processes are organized in a hierarchical topology and communicate with each other by 

message transfers. Our earlier work [Boch 89c] presented an algorithm to establish 

virtual rings which connect nodes of the tree. Rings represented the rendezvous relations 

among LOTOS processes and were used to synchronize distributed processes by a 

distributed synchronization algorithm [Gao 89]. 

Distributed multi-way rendezvous is another important issue. In multi-way rendezvous, 

more than two processes may synchronize in a single rendezvous. The problem of 

implementing multiple rendezvous captures two fundamental issues in distributed 

computing: mutual exclusion and synchronization. That is, a rendezvous algorithm makes 

sure that a rendezvous can only be executed if all the processes relating to it are ready to 

execute it (synchronization) and a process may be ready to execute more than one 

rendezvous for a given state, but it executes no more than one at a time (mutual 

exclusion).   
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It is not trivial to implement multi-way rendezvous in a distributed system where 

processes communicate with each other via asynchronous message transfers. The 

following properties are desirable: 

1) A fully distributed and symmetric solution. That is, there is no central memory nor any 

pre-defined distinguished process that makes all the decisions; all the processes are 

initially indistinguishable except that they have their own process identifier. 

2) A fair solution. That is, if an interaction is enabled infinitely often, it will be executed 

eventually. 

3) The number of messages needed per interaction should be bounded. 

4) A dynamic solution for the distribution of processes. That is, during the execution, the 

number of processes associated to a rendezvous may change and processes are 

dynamically distributed onto different machines. 

The problem has been under study for a long time. A survey of this topic can be found in 

[Levy 88], and other algorithms can  be found in [Rame 87] [Bagr87] [Gao 89] [Kuma 

90] [Atti 90]. Except the one presented in [Gao 89], non of the others satisfies all the 

properties mentioned above. The algorithm of [Gao 89] uses ring structures (ring 

structures are also used in [Bagr 87] [Kurm 90]). A ring represents a rendezvous relation 

and processes which are connected by a ring synchronize for a rendezvous. The 

algorithm passes messages along rings to fulfill synchronization and mutual exclusion, 

and it also allows new processes to be dynamically inserted into rings. 

In this paper, we mainly address the question of the distributed LOTOS execution model. 

In our model, a specification is represented by a so-called activity tree. The tree reflects 

the dynamic relationships between the active LOTOS processes within the system. The 

tree can be partitioned into sub-trees which represent the parts of the LOTOS 

specification (or LOTOS processes) which are executed in different sites. Then an 

algorithm is presented to dynamically establish rings among these sub-trees (and not 

among nodes of the tree as in [Boch 89c]). Rings correspond to gates of LOTOS and they  

represent  rendezvous relations. Distributed rendezvous algorithms based on ring 

structures such as the one in [Gao 89] can be used to implement the synchronization 

between sub-trees.  

Our model has several features. First, in contrast to [Sist 91], our model is a symmetric 

solution for the distributed implementation, that is, sub-trees in the system are treated 

equally. Second, our model consists of two functional parts. The first handles the 

behavior of LOTOS specifications within a single sub-tree and the second deals with 
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synchronization between the different sub-trees. There is a clear and simple interface 

between the two parts. Different LOTOS interpreters may be used for the first part. Third, 

rings represent rendezvous relations among sub-trees in our model. There are several 

distributed synchronization algorithms based on rings mentioned above which may be 

used for the distributed implementation.  Fourth, the distributions of sub-trees over 

different processing sites may be done  at run-time. 

The paper is organized as the following. We give an overview of our approach in Section 

2. We define a general LOTOS execution model which is based on a so-called activity 

tree in Section 3. In Section 4, we adapt this general model for the distributed 

implementation. We address questions such as the partitioning the activity tree into sub-

trees and establishing rings among sub-trees. A pilot implementation is described in 

Section 5. Finally, Section 6 contains conclusions. 

2. System overview 

In this section, we give an overview of our distributed system for the execution of 

LOTOS specifications, as shown in Figure 1(a). The implementation environment 

involves a fixed number of sites (computers) which are connected by a transport service, 

which provides reliable end-to-end communication. A LOTOS specification is 

partitioned into sub-specifications and they are executed in different sites. At each site, 

there is a Local LOTOS Execution Engine (LLEE) component and a Synchronization 

Entity (SE) component. The allocation of the different parts of the LOTOS specification 

to the different sites is not discussed in detail in this paper. We either assume static 

allocation, or a single Allocation Management component which makes these allocation 

decisions dynamically.  

2.1. Local LOTOS Execution Engine (LLEE) 

After being allocated to a given site, a LOTOS sub-specification is handled by the LLEE  

component of that site. The structure of the LLEE is shown in Figure 1(b). It contains 

two main sub-components: LOTOS Execution (LE) and Distributed Coordination (DC). 

The function of the LE is the same as an ordinary LOTOS interpreter such as [Logr 88]. 

It calculates the possible actions of the LOTOS sub-specification. There are two types of 

actions. An action is called a local action if it only involves processes of the local sub-

specification. An action is called a global action if it involves processes of the local sub-

specification as well as processes of the sub-specifications handled in other sites. After 
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executing an action (local or global), the LE changes its local state as implied by the 

execution of the action. An LE consists of two parts: a Control Part which handles the 

control part of the LOTOS behavior, and a Data Part which handles the data part of the 

LOTOS behavior.  

The DC consists of three procedures: Distribution, Ring Establishment and Local 

Rendezvous Manager (LRM) . The function of the Distribution procedure is to transfer a 

sub-specification, which is to be executed as a separate sub-tree on a different site. The 

function of the Ring Establishment procedure is to establish rings for rendezvous when 

the system transfers sub-specifications. The LRM does two things: It chooses a local 

action for execution, or it communicates with the SE component for the execution of a 

global action. For the latter, the LRM provides to the SE a list of actions which are 

locally possible and need to rendezvous with other sub-specifications. Each action in the 

list is associated with a ring identifier to which the action relates. 

2.2. Synchronization Entity (SE) 

The function of the SE's is to implement global synchronization involving more than one 

sub-specification. After receiving a list of possible actions, a SE communicates with the 

other SE's in the system through the underlying Transport Service. As mentioned in 

Section 1, there are several distributed synchronization algorithms which work in this 

context. 

The algorithm of [Gao 89] which we have implemented proceeds along the following 

lines: The SE sends out a so-called Matching Detection message (MD) for one of the 

possible action it selects. The MD goes around the related ring to determine whether all 

connected SE's are ready to participate in a rendezvous. If they are ready, a so-called 

Matching message (M) is circulated around the ring to establish the rendezvous. 

Otherwise the SE, which initiated the MD message, sends out ASK messages to those 

SE's which did not agree to participate in the rendezvous. The result of the negotiation is 

either a rendezvous (circulation of the M message) or an abandon of the attempted 

rendezvous, indicated by the circulation of a so-called No Matching message (NM). The 

algorithm ensures that a rendezvous for a global action will be found if such a 

rendezvous is possible (see [Gao 89] for more details). 
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When a rendezvous has been selected, the SE sends the action with associated new 

parameter values and predicates (which are obtained through the synchronization 

algorithm) to the local LLEE for execution. 

2.3. Allocation Management 

Allocation management is a fundamental issue in distributed computing. It involves two 

basic questions: how to partition a system into sub-systems and how to distribute these 

sub-systems onto different sites. 

Our system distributes sub-specifications in two modes: static and dynamic. In the static 

mode, a user has to indicate, in his LOTOS specification, the specific site where a sub-

specification is executed. In the dynamic mode, the user only indicates which sub-

specifications can be moved out from the local site to be executed in any other site of the 

system, and it is the Allocation Management component which does the distribution at 

run-time. In this mode, a sub-specification may be kept in the original site if no other 

sites are available.  

Allocation 
management

Local LOTOS 
Execution Engine 
(LLEE)

Synchronization 
Entity (SE)

Interface

Site i

Local LOTOS 
Execution Engine 
(LLEE)

Synchronization 
Entity (SE)

Interface

Site j

The distributed  
execution model

The distributed 
multi-way rendezvous 
algorithm

Transport Service

InterfaceInterface

(a)  Overall system structure  
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Distributed Coordination (DC)

Ring Establishment

Distribution

Local Rendezovus Manager (LRM)

Control part

Data part

        

Lotos Execution (LE)

(b)  Structure of the Local LOTOS Execution Engine (LLEE)

Local LOTOS Execution Engine (LLEE)

 

Figure 1: Overall system structure 

3. A general LOTOS execution model 

In this section, we present a general execution model for LOTOS specifications. The 

model will be modified for distributed implementation in the next section. The execution 

model is based on an activity tree with attributes. The activity tree reflects the dynamic 

relations between the process invocations and activations of behavior expressions in the 

specified system; the functions related to the attributes control the execution of 

interactions. During the execution, the tree is dynamically changed, which reflects the 

dynamic change of the behavior of the specified system. 

Figure 2 shows a LOTOS specification of an 'Example' system. After dropping  money 

into a vending machine (VM), a boy may obtain a candy, if the latter is not eaten by one 

of the two little devils that are included in the VM ('m' denotes 'money', 'c' denotes 

'candy', and 'e' denotes 'eat_candy'). 

 Specification Example:noexit 
  hide m, c in 
  Boy[m, c] || VM[m, c] 
  where 
  process Boy[m, c]:noexit:= 
    m; ( c; Boy[m, c] 
   [] 
   Boy[m, c]) 
   endproc 
  process VM[m, c]:noexit:= 
   hide e in 
   Machine[m, c, e]  
   | [e] |  
   (Devil[e] ||| Devil[e]) 
   where 
  process Machine[m, c, e]:noexit:= 
   m; ( c; Machine[m, c, e] 
   [] 
   e; Machine[m, c, e] ) 
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  endproc 
  process Devil[e]:noexit:= 
   e; Devil[e] 
  endproc 
  endproc 
 endspec 

 Figure 2:  Example: Boy and Vending Machine (VM) 

3.1. Activity tree 

Various forms of trees have been used to represent the behavior of LOTOS 

specifications. For example, a so-called "behavior tree" [Logr 88] (also called "action 

tree" in [ISO 89]) is used to show all possible action sequences defined by a LOTOS 

specification. A static syntax tree can also be used to show the structure of a LOTOS 

specification and the relations among its actions. Given below is the context-free 

grammar of a simplified syntax for the temporal control part of LOTOS, which forms the 

basis on which we will define our activity tree. In the next sub-section, we will define 

'attributes' to deal with interaction offers involving data parameters.  

In the following, 'B' is a non terminal (and also the starting) symbol of the grammar, and 

{[], ||, [>, ;, >>, stop, exit, i, g1, ..., gn} is the set of terminal symbols. Each g�{i, g1, ..., 

gn} denotes a gate in the system, each r�{[], ||, [>, ;, >>} denotes a LOTOS operator, and 

'stop' and 'exit' denote the STOP and EXIT processes respectively. 

(1) B t            for each t�{ stop, exit} 

(2) B  g;B       for each gate g�{i, g1, g2, ..., gn} 

(3) B  B >>B 

(4) B  B [] B 

(5) B  B || B 

(6) B  B [> B 

In contrast to the syntax tree of a LOTOS specification which represents the static 

structure of the text of the specification, the activity tree represents a dynamically 

changing system state during the execution of the specification. Nevertheless, it has 

certain similarities with the syntax tree in so far as the production rules of the activity 

tree correspond to the above syntax rules. The major difference with the behavior tree is 

that the activity tree is normally not completely expanded. It is grown in a top-down 

fashion, as explained below, starting with the root node which represents the system 

specification. 



- 10 - 

The activity tree reflects the possible activities and the dynamic relationships between 

the active behavior expressions during the execution of the specified system. An activity 

tree consists of leaf nodes and  internal nodes. An  internal node represents the relation 

between its descendent  nodes, i.e. one of the LOTOS operators [], ||, |||, and [> etc., or 

contains the description of the behavior to be activated after the successful termination of 

its descendants, i.e. >>B (where B is a behavior expression). There are two kinds of  leaf 

nodes: terminal and non-terminal. A terminal node corresponds to one of the following 

behavior expressions: 'stop', 'exit' and 'g;B', where 'g' is called an active gate and 'B' is the 

behavior expression which will be activated after a rendezvous happens at 'g'. A non-

terminal node cannot directly participate in an interaction, it must first be expanded. A 

non-terminal node corresponds to a behavior expression 'B1#B2', where # is one of the 

operators ||, |||, [], [> and >>, and 'B1' and 'B2' are behavior expressions. During the 

growing phase, a non-terminal node may be expanded and may thus lead to new terminal 

nodes that may participate in interactions. Figure 3(a) shows the activity tree of the 

Example system before any money is dropped in. Figure 3(b) shows the tree after the 

expansion of the node N12 representing the vending machine (VM). Note that in the 

node N121, the invocation of the 'Machine[m, c, e]' process is replaced by its definition, 

as given in Figure 3. 

Machine[m, c, e] |[e]| (Devil[e] ||| Devil[e])
m; 
(c;Boy[m, c] [] Boy[m, c])

|[m, c]|

internal node (root)

terminal (leaf) node non-terminal (leaf) node

(a)

N1(system)

N11(Boy) N12(VM)

 

m; 
(c;Boy[m, c] [] Boy[m, c])

|[m, c]|

N1(system)

N11(Boy)

N12(VM)

|[e]|

m; (c; Machine[m, c, e] 
       [] 
      e; Machine[m, c, e])

Devil[e] ||| Devil[e]

N121(Machine) N122

(b) growing node 
      N12 of (a)

cm
h

A  (N1)={m}
h

A (N1)={}

A  (N11)={m}m A (N11)={}c

A (N12)={m}m A (N12)={}c
h

A (N12)={}
e

A (N121)={m}m A (N121)={}c
A (N121)={}e

A (N122)={}e
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(c;Boy[m, c] [] Boy[m, c])

|[m, c]|

N1(system)

N11(Boy)
N12(VM)

|[e]|

c; Machine[m, c, e] 
 [] 
e; Machine[m, c, e]

Devil[e] ||| Devil[e]

N121(Machine) N122

(c) updating after 
rendezvous happens 
at gate 'm'

 

Notation: node cannot be expanded (internal or terminal leaf node)

node can be expanded (non-terminal leaf node)

Figure 3:  Different stages of the activity tree  
                  for the system of Figure 2.                            .                

When executing a LOTOS specification, the system behavior changes dynamically. So 

does the activity tree. The activity tree can be grown and updated. By growing, we mean 

that the system expands non-terminal nodes in order to find terminal nodes with possible 

interactions. By updating, we mean that, after a rendezvous, the system prunes those sub-

trees of the activity tree which represent alternative behavior being not possible any more 

and let some behaviors (next behaviors) be active. Figure 4 shows the rules for growing. 

A non-terminal (leaf) node 'B1*B2' (* is one of [], ||, |||, and [>) can be expanded to 

become an internal node '*' and with two sons (terminal or non-terminal nodes) 'B1' and 

'B2', as shown in Figure 4(a). Figure 4(b) shows a non-terminal node 'B1>>B2' can be 

expanded to become an internal node '>>B2' with a son (terminal or non-terminal) node 

'B1'. We note that there is no growing rule corresponding to the syntax rule of process 

invocation. If the LOTOS behavior expression of a non-terminal node contains a process 

invocation, this invocation will be replaced by the behavior of the corresponding process 

definition with a substitution of its parameters, as defined by the LOTOS semantics. The 

behavior thus obtained  is then the basis for further expansion of the node. 
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B1*B2 *
growing

B2B1

(a)

B1>>B2 >>B2

B1

(b)

Notation: non-terminal node

internal node terminal or  
non-terminal node

Figure 4: The growing rules

*     one of the operators [], ||, ||| or [>

B1

growing

 

Figure 5 shows two of the rules of updating. After participation a rendezvous at gate 'g', a 

terminal node 'g;B' become (terminal or non-terminal) node 'B', as shown in Figure 5(a). 

Figure 5(b) shows a tree with root node '[]' and two sub-trees 'B1' and 'B2'. When a 

rendezvous happens in 'B2', 'B1' is pruned and 'B2' is updated to " B2' ". That is, the 

original tree become one with empty root node (which can be replaced by its son) and a 

sub-tree " B2' ". The full updating rules are given in [Wu 89] by comparing them with 

LOTOS semantics as defined by the transition system given in [ISO 89]. The growing 

and updating of the activity tree will be discussed in more detail in Section 3.3. 

g;B B

(a) updating after a rendezvous 
      happens at 'g'.

updating

[]

B2 B2'

(b) updating after a rendezvous 
      happens in B2

Notation: internal  or terminal node

terminal or non-terminal node subtree

Figure 5: Two updating rules                                               . 

B1

updating
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3.2. Attributes 

Attributes are defined in the activity tree. Their function is to determine which nodes 

participate in a rendezvous on a given gate. As in the case of attribute grammars [Boch 

76c], the attributes are associated with the nodes of the tree. In contrast to attribute 

grammars, however, where the values of the attributes are evaluated once and for all for 

each given syntax tree, the values of the attributes associated with a node in the activity 

tree may change over time, as the structure of the activity tree changes. 

Without loss of generality, we may assume that each node 'B' of an activity tree 

corresponds to a specification with the general structure 'P[S1]:= hide S2 in < 

expression>, where S1 and S2 are the gate lists. Here all free gates of <expression> must 

either be in S1 or S2. In most cases S2 will be empty, for instance, a node representing 

the behavior 'g1;B1 [] g2;B2' will be written as 'P[g1, g2] := hide in g1;G1 [] g2;B2'. An 

attribute Ag is defined in node 'B' for each g�S1S2. An attribute Ag is also called a 
'hide attribute' (denoted as Ahg ) if g�S2. The value of attribute Ag is a set of interaction 

offers concerning the gate 'g'. We treat 'stop' and 'exit' as two kinds of special gates. Note, 

in LOTOS, gate instances are dynamically created. For example, the statement 'hide S in 

< expression>' introduces new gate instances. In the following, we use the word 'gate' to 

denote 'gate instance' and we assume that gate instances have unique names. 

The attributes of the activity tree are 'synthesized', that is, they are evaluated by applying 

the evaluation rules from the bottom of the tree towards the top. The precise definition of 

these evaluation rules is given in the following table. In the table, 'Ag(B)' denotes the 
attributes of gate 'g' in node 'B', 'og' denotes the interaction offer of gate 'g', 'S' denotes a 

gate list, and 'B B1#B2' denotes an internal node 'B' which has two son nodes, the left 

son 'B1' and the right son 'B2', where '#' is one of operators [], ||, [>, and >>. In the table, 

there are two functions matched and derived. Their formal definitions are given in [Wu 

89]. They can be understood here by the example: matched('g?x:int!3?z:int', 

'g?x:int?y:int!5' ) = true and derived('g?x:int!3?z:int', 'g?x:int?y:int!5') = 'g?x:int!3!5'. 

 

Attribute evaluation rule 

For leaf nodes: 

Astop(stop) =
Aexit(exit) ={oexit} 

Ag(g;B) ={og} 
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Ag(B) = if B is non-terminal node 

For internal nodes: 

Ag(B) = Ag(B1) if B B1>>B2 

Ag(B) = Ag(B1)Ag(B2) if B B1 [] B2 

Ag(B) = Ag(B1)Ag(B2) if B B1 |S| B2 and (g�S and g ≠ exit) 
Ag(B) ={o'g |o'g=derived(o1g,o2g),  

 o1g�Ag(B1), o2g�Ag(B2) and matched(o1g, o2g)=true}  

  if B B1 |S| B2 and (g�S or g = exit) 

Ag(B) = Ag(B1)Ag(B2) if B B1 [> B2 

(Note: Ag(B) = if gate 'g' is not defined in node 'B') 

It is clear that a rendezvous is possible at gate 'g' if the attribute Ahg  at the node where 'g' 

is hidden contains an offer 'og'. All nodes that participate in the derivation of  'og' will be 

involved in the rendezvous. For example in Figure 2(b), a rendezvous can only happen at 
gate 'm' because Ahm(N1)={m}, Ahc(N1)={}, and Ahe(N12)={}. Nodes N11 and node 

N121 will be involved in the rendezvous. 

3.3 Three phases for the execution of interactions 

The activity tree changes dynamically during the execution of  LOTOS specifications 

through the repetition of the following three phases: growing, matching and updating. In 

the growing phase, the system expands non-terminal nodes until all or some terminal 

nodes with possible interactions are reached. After that, the system goes into the 

matching phase, by evaluating attributes, to find possible rendezvous usually involving 

several terminal nodes of the tree. If a possible rendezvous is found and executed, the 

matching phase is followed by the updating phase during which the system updates the 

tree, according to the rules discussed in Section 3.1 to reflect the state change implied by 

the rendezvous. If the matching phase does not lead to any rendezvous, the growing 

phase is resumed.  

An example of growing is given by Figure 3(b) which shows the activity tree obtained by 

expanding the non-terminal node N12 of the Example tree of Figure 3(a). Figure 3(b) 

also shows the values of attributes in each node of the tree, which are obtained in the 

matching phase. An example of updating is given by Figure 3(c) which shows the 

Example tree of Figure 3(b) after a rendezvous at gate 'm' in which the terminal nodes 

N11 and N121 participated. 
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The dynamic features of the activity tree have certain advantages. As discussed in [Wu 

90], it allows parallel processing: The three phases of growing, matching and updating in 

different parts of the activity tree could be processed largely in parallel. Different 

growing strategies, such random, breadth-first, and depth-first , can be applied to the 

activity tree. Some of them can deal with non-well guarded expressions, as discussed in 

[Wu 90]. Another interesting question is fairness. In [Wu 91], the concepts of "process 

fairness", "alternative fairness" and "channel fairness" are defined for LOTOS, and it is 

shown how they can be implemented based on the activity tree. 

4. A distributed LOTOS execution model 

In this section, we present a distributed execution model for the implementation of 

LOTOS specifications. It is obtained by modifying the general model of the previous 

section. The activity tree is partitioned into sub-trees which represent the LOTOS sub-

specifications which could be executed in different sites. A sub-tree is handled by a 

LLEE of a given site (see Figure 1(a)) and the LE component of the LLEE (see Figure 

1(b)) implements the functions of the general model, that is, it implements the three 

phases of growing, matching and updating.  

In the growing phase, besides expanding non-terminal nodes to find terminal nodes with 

possible interactions, the LE may reach non-terminal nodes which represent sub-

specifications to be executed in remote sites. In this case, the system calls the DC 

component of the LLEE (see Figure 1(b)) to transfer it to another site and to establish 

rings connecting them. After the growing phase, the LE component goes into the 

matching phase to find locally possible actions (local and global). The DC component 

makes a choice between the execution of local actions and the execution of global 

actions. If the DC chooses to execute global actions, the SE (see Figure 1(a)) is called to 

implement global synchronization. After executing an action, the LE component goes 

into the updating phase where it updates the local sub-tree. 

4.1. Activity sub-trees 

In this section, we discuss the decomposition of the global activity tree into sub-trees 

which we call a-trees in the following. In addition to the nodes of an activity tree, an a-

tree may include two special kinds of nodes, a Rf-node and Rs-nodes, which represent 

the relations among the a-trees in the system. An Rs-node in an a-tree T1 represents 

another a-tree T2, which is logically  a sub-tree of T1. An Rs-node is represented by an 
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expression 'Ts.Gs', where Ts is the identification of the a-tree T2 and Gs is a set of gates 

for which T2 may provide offers. An Rs-node is a leaf node in an a-tree. An Rf-node is a 

root node in an a-tree. It represents the super-tree of the a-tree. An Rf-node is represented 

by an expression 'Tf.Gf' with a similar meaning as for Rs-nodes. Figure 6 shows an 

example of three a-trees which represents the activity tree of Figure 3 (b). We assume 

here that each a-tree has an unique identifier. For instance, T1, T2 and T3 are the 

identifiers of a-trees in Figure 6. 

We now give an informal description of the procedure for creating a-trees. Initially there 

is only one a-tree in the system, which is the activity tree. Let T1 be an a-tree and T2 be 

its sub-tree which will be partitioned from T1. Then we get two new a-trees T3 and T4. 

T3 is obtained from T1 by replacing the sub-tree T2 in T1 by an Rs-node 'Ts.Gs', where 

Ts=T4 and Gs is obtained by checking the behavior defined by T2. A gate g is in Gs if T2 

may provide interaction offers for it. T4 is obtained from T2 by adding a Rf-node 'Tf.Gf' 

(root node) to it, where Tf=T3 and Gf is obtained by checking the path in T1 from the 

root to the sub-tree T2. A gate g, for which T4 may provide offers, is in Gf if there is 

node N along the path such that N is '||', or N is '|S|' and g�S, or N is an Rf-node 'Tf'.Gf'' 

and g�Gf'. 

m; 
(c;Boy[m, c] [] Boy[m, c])

|[m, c]|

|[e]|

m; (c; Machine[m, c, e] 
       [] 
      e; Machine[m, c, e])

Devil[e] ||| Devil[e]

T1 T2
T1.[m,c]

T2.[m,c]

T3.[e]

T2.[e]

Rs-node

Rs-node

Rf-node Rf-node

T3

Figure 6: Three a-trees representing the activity tree of Figure 3(b) 

4.2. Representing rendezvous relations by rings 

In LOTOS, processes rendezvous at gates. However, there may be more than one group 

of processes that rendezvous at a given gate. For the example of the specification P1[a] || 

(P2[a] ||| P3[a]), gate a corresponds to two rendezvous relations. One involves processes 

P1 and P2 and the other involves processes P1 and P3. Therefore we may use a tuple <g, 

P> to uniquely denote a rendezvous relation, where g is a gate name and P is a set of 

LOTOS process instances which rendezvous at g. However, in our context we are not 
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interested in LOTOS process instances, but only in sub-specifications which are executed 

on different sites. A sub-specification may contain more than one LOTOS process 

instance. Therefore, we use in the following a tuple <g, S> to denote a rendezvous 

relation, where g is a gate name and S is a set of sub-specifications which rendezvous at 

g. 

In the following, a rendezvous relation <g, S> is represented by a ring structure. That is, 

all sub-specifications in S are connected by a ring which represents this relation. There 

are two advantages for using a ring structure. First, a ring structure is used by several 

distributed rendezvous algorithms [Bagr 87] [Gao 89] [Kuma 90]. Second, the ring 

structure is easy to manipulate. For example to insert a  new node in a ring, the node 

which is responsible for the insertion of the new node only needs to know the address of 

its successor in the ring. This feature allows us to deal with the dynamic creation of 

LOTOS processes and their execution at remote sites. 

We use the following example to show the complex relations that may exist between sub-

expressions, rings, and interaction offers. In fact, a given sub-specification may be 

connected to several rings corresponding to the same gate. Also, a sub-specification may 

provide more than one interaction offer on a given ring, and an interaction offer provided 

by a sub-specification may relate to several rings. Figure 7(a) shows the example 

specification (we assume that a sub-specification has the same identifier as the site on 

which it is executed). Suppose that P1 and P3 are executed on site S1 and P2 is executed 

on site S2, then there are two rings a.0 and b.0, which represent rendezvous relations <a, 

{S1,S2}> and <b, {S1,S2}> respectively (see Figure 7(b)). Note that P2 provides two 

interaction offers a!1 and a!2 for the same ring a.0. Figure 7(c) shows the case where P1, 

P2 and P3 are executed on sites S1, S2 and S3 respectively. Note that there are two rings 

a.0 and a.1, which represent rendezvous <a, {S1,S2}> and <a, {S1,S2,S3}> respectively, 

concerning the gate a. For P1, the offer a?x:int relates to ring a.0 and the offer a?y:int 

relates to ring a.1. And the offers a!1 and a!2 of P2 relate to both ring a.0 and ring a.1.  

We assume here that each ring has a unique identifier in the system (e.g. a.0, a.1, b.0 in 

Figure 7(b)(c)). However, each ring may have different local references in different site, 

which will be explained in the following sections. 
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(a)
specification Spec[a,b]:exit
behavior P1[a,b] |[a,b]| P2[a,b]
where
process P1[a,b]:exit:=
  (a?x:int; b; exit)
  |||
  (P3[a] |[a]| (a?y:int; exit))
endproc
process P2[a,b]:exit:=
  (a!1; exit) [] (a!2; b; exi
endproc
process P3[a]:exit:=
  a?z:int; exit
endproc
endspec

(b)

(c)

P1 & P3

  P2

a.0
b.0

    P1 

  P2

b.0
  P3a.0

a.1

a.0

a.0a.1

a.1

M1

M2

M1

M2

M3

|[a,b]|

||| []

a?x:int; b; exit |[a]|

a?z:int; exit a?y:int; exit

a!1; exit a!2; b; exit

P1

P3

P2

|[a,b]|

|||
[]

a?x:int; b; exit |[a]|

a?z:int; exit a?y:int; exit

a!1; exit a!2; b; exit

T1:

P1

P3

P2T2.[a,b]

T1.[a,b]
T2:

(d)

(e) N1

N11 N12

N111 N112

N1121 N1122

RRa(N1121)={<a,{T1}>} 

RRb(N1121)=
RRa(N1122)={<a,{T1}>} 

RRb(N1122)=

RRa(N112)={<a,{T1}>} 

RRb(N112)=

RRa(N111)={<a,{T1}>} 
RRb(N111)={<b,{T1}>}

RRa(N11)={<a,{T1}>} 
RRb(N11)={<b,{T1}>}

RRa(N1)={<a,{T1,T2}>} 
RRb(N1)={<b,{T1,T2}>}

RRa(N12)={<a,{T2}>} 
RRb(N12)={<b,{T2}>}
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|[a,b]|

|||

[]

a?x:int; b; exit |[a]|

a?y:int; exit

a!1; exit a!2; b; eixt

T1:

P1

P2

T2.[a,b]

T1.[a,b]
T2:

(f)

T3.[a]

a?:int; exit

P3

T1.[a]
T3:

.

.

.

. . .

RRa(N1121)={<a,{T3}>} 

RRb(N1121)=

N1

N11 N12

N111 N112

N1121 N1122

N2

N21

N211 N212

N3

N31

RRa(N1122)={<a,{T1}>} 

RRb(N1122)=

RRa(N112)={<a,{T1,T3}>} 

RRb(N112)=
RRa(N111)={<a,{T1}>} 
RRb(N111)={<b,{T1}>}

RRa(N11)={<a,{T1}>, <a,{T1,T3}>} 
RRb(N11)={<b,{T1}>}

RRa(N12)={<a,{T2}>} 
RRb(N12)={<b,{T2}>}

RRa(N1)={<a,{T1,T2}>, <a,{T1,T2,T3}>} 
RRb(N1)={<b,{T1,T2}>}

Aa(N1121)={<anything,<a,{T3}>>} Aa(N1121)={<a?y:int,<a,{T1}>>}

Aa(N112)={<a?y:int,<a,{T1,T3}>>}

Aa(N111)={<a?x:int,<a,{T1}>>}

Aa(N11)={<a?x:int,<a,{T1}>>,  
                  <a?y:int,<a,{T1,T3}>>}

Aa(N11)={<a?x:int,<a,{T1,T2}>>,  
                  <a?y:int,<a,{T1,T2,T3}>>}

Aa(N12)={<anything,<a,{T2}>>}

RRa(N211)={<a,{T2}>} 

RRb(N211)=
RRa(N212)={<a,{T2}>} 
RRb(N212)={<b,{T2}>}

RRa(N21)={<a,{T2}>} 
RRb(N21)={<b,{T2}>}

RRa(N21)={<a,{T1,T2}>} 
RRb(N21)={<b,{T1,T2}>}

RRa(N31)={<a,{T3}>} 

RRb(N31)=

RRa(N3)={<a,{T1,T3}>} 

RRb(N3)=

Figure 7: An Example 

 

4.3. Ring establishment 

In the above two sub-sections, we considered that a LOTOS specification consists of a 

set of sub-specifications and we used a-trees to represent these sub-specifications. We 

also showed that different kinds of ring structures representing rendezvous relations may 

connect these sub-specifications. In this section, we present an algorithm to dynamically 

establish these rings.  
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4.3.1. The general idea 

Like the activity tree of Section 3, an a-tree records the relationships of LOTOS 

processes. For example,  Figure 7(d) shows the a-tree of the specification of Figure 7(a). 

The tree shows that P1 and P2 rendezvous at gates a and b, because they share a parent 

node |[a,b]|. Suppose that P2 is moved out to execute on another site, then we obtain the 

two a-trees in Figure 7(e). The a-tree T1 of Figure 7(e) shows that P1 and T2, which 

represents P2, rendezvous at gates a and b. Figure 7(f) shows three a-trees, which are 

obtained when P3, a sub-process of P1, is moved out to execute on a third site. The a-tree 

T1 of Figure 7(f) shows that T3, which represents P3, rendezvous at gate a with 

(a?y:int;exit) in P1 as well as with T2 which represents P2. It also shows that T2 

rendezvous at gates a and b with (a?x:int; b; exit) of P1. 

The general idea of the ring establishment algorithm is the following. Each time when a 

sub-tree T' is moved out from an a-tree T" to be executed on another site, we check the 

relationship between T' and the rest of T", which may include Rs-nodes and Rf-nodes 

denoting other a-trees. If T' has no rendezvous relationship concerning gate g with the 

rest of T", then there is no ring concerning this gate connecting T' and T"; if T' has a 

rendezvous relationship concerning gate g with some nodes of T" and these nodes 

include neither Rs-nodes nor the Rf-node, a ring concerning the gate is created between 

T" and T'; if T' has a rendezvous relationship concerning gate g with some nodes of T" 

which include some Rs-nodes or the Rf-node, T' should be inserted into the 

corresponding rings. For example, after partitioning the a-tree of Figure 7(d), we have 

two a-trees in Figure 7(e). By checking the relationship between the two trees, two rings 

are created to connect the two trees (see Figure 7(b)). By continuing the partition of the 

a-tree T1 in Figure 7(e), we obtain the three a-trees shown in Figure 7(f). The 

corresponding rings are shown in Figure 7(c).  

4.3.2. Rendezvous relation attributes and their evaluation rules 

A ring represents a rendezvous relation. In this section, rendezvous relation attributes  

are defined for the nodes of all a-trees to check the relationship among them. The value 

of a rendezvous relation attribute concerning gate g is a set of tuples <g, T>, where g is a 

name of a gate and T is a set of identifiers of a-trees in the system. A tuple <g, T> 

denotes the rendezvous relation at gate g involving all Ti�T. An attribute value including 

several tuples concerning gate g means that there is more than one rendezvous relation 

concerning this gate.  



- 21 - 

The following table shows the evaluation rules for rendezvous relation attributes, where 

RRg(N) denotes the rendezvous relation attribute for gate g at node N of an a-tree. 

Rendezvous relation attributes are evaluated from the bottom up through the tree. Note 

that the rendezvous relation attributes of a given a-tree give only a partial picture of the 

global rendezvous relations. This is so because certain rendezvous relations may not 

involve the a-tree in question, and/or the set T of a-tree identifiers of certain rendezvous 

relations included in an attribute may miss certain a-trees which are involved only 

indirectly through the a-nodes which are referenced in the Rs-nodes and Rf-nodes. For 

example, the a-tree T2 of Figure 7(f) does not include a reference for a-tree T3. 

Therefore a tuple <g, T> is more accurately interpreted in this context saying that there is 

a rendezvous relation at gate g which involves at least all Ti�T. The global rendezvous 

relations can be constructed based on the (local) rendezvous relation attributes of all the 

a-trees in the system, as discussed in the next sub-section.  

Rendezvous relation attribute evaluation rules 

For leaf nodes:  

RRg(N) =<g,{Ts}> if N is Rs-node and N = Ts.Gs and g�Gs  

RRg(N) = if N is Rs-node and N = Ts.Gs and g�Gs 

RRg(N) = <g,{Tlocal}> if N is not Rs-node and the behavior defined by N  

 does or will provide offers concerning gate g; Tlocal  is  

 the identifier of the local a-tree 

RRg(N) =  if N is not Rs-node and the behavior defined by N  

 does not or will not provide any offers concerning gate 

g 

For internal nodes:  

RRg(N) = RRg(N1)  RRg(N2) if N  N1>>N2  

RRg(N) = RRg(N1)  RRg(N2) if N  N1 [] N2  

RRg(N) = RRg(N1)  RRg(N2) if N  N1 |S| N2 and g�S  

RRg(N) = {<g,T>| T=T1  T2 and<g,T1>�RRg(N1) and <g,T2>�RRg(N2)}  

 if N  N1 |S| N2 and g�S  

RRg(N) = RRg(N1)  RRg(N2) if N  N1 [> N2  

RRg(N) = RRg(N1) if N  N1 and N is Rf-node and N = Tf.Gf and g�Gf 

RRg(N) = {<g,T>| T=Tf  T1 and<g,T1>�RRg(N1)} 

 if N  N1 and N is Rf-node and N = Tf.Gf and g�Gf 
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For example, the RRa(N1)= {<a,{T1,T2,T3}>, <a,{T1,T2}>} at the root of the a-tree T1 

of Figure 7(f) indicates that there two rendezvous relations concerning gate a. The first 

one involves at least T1, T2 and T3, and the second one involves at least T1 and T2. 

4.3.3. Ring establishment algorithm 

We assume in the following that a sub-tree, which will be moved away from a given a-

tree Tlocal, does not include any Rs-node. When the sub-tree is moved, it will be replaced 

by an Rs-node. Before the moving, the sub-tree has the value of Tlocal for its rendezvous 

relation attributes concerning related gates, because it represents a local behavior. After 

the move, the related Rs-node has the value Tmove as its rendezvous relation attributes 

concerning related gates, where Tmove is the identifier of the newly created a-tree. Thus 

the distribution of the sub-tree may cause, through the evaluation rules of the table above, 

a change of values of the related rendezvous relation attributes in the root of the a-tree 

Tlocal. 

Let RRg be the newly evaluated rendezvous relation attribute concerning gate g after the 

moving of Tmove. We have the following ring establishment rules: 

1) For elements in RRg which do not include Tmove, no action is required; 

 

2) For each <g, {Tlocal , Tmove}> �RRg, a new ring concerning the gate g will be created 

which connects Tlocal and Tmove and the local system identifies the ring by the tuple <g, 

{Tlocal , Tmove}>; 

 

3) For each <g, U> �RRg such that  Tmove�U and case (2) does not apply, we define V 

to be obtained from U by replacing Tmove by Tlocal. We distinguish the following two 

cases:  

a) if <g,V> � RRg, Tmove will be inserted in the ring identified by <g,V> and the local 

identifier of the ring is changed from  <g,V> to  <g,U>;  

b) if <g,V>� RRg, then a ring, which is the duplication of the ring identified by <g,V>, 

is created and Tmove is inserted. This new ring is identified by <g,U>. 

We consider the example of Figure 7. The a-trees T1 and T2 in Figure 7(e)  represent P1 

and P2, respectively, in the specification of Figure 7(a), and the two rings a.0 and b.0 

connect T1 and T2 (see Figure 7(b)). The related rendezvous relation attributes at the 

root of T1 are RRa(N1)={<a,{T1,T2}>} and RRb(N1)={<b,{T1,T2}>}, and they refer to 
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the rings a.0 and b.0, respectively. Now consider that P3 is moved to site S3 to execute. 

We have the a-trees T1, T2 and T3 in Figure 7(f). The rendezvous relation attribute at the 

root of T1 becomes RRa(N1)= {<a,{T1,T2}>, <a,{T1,T2,T3}>}, which is different form 

the one in Figure 7(e), and RRb(N1)= {<b,{T1,T2}>}, which is the same as in Figure 

7(e). The value of RRa(N1) leads to the ring establish rule 3 above. This means that the 

ring a.1, which is the duplication of the ring a.0 locally identified as <a,{T1,T2}>, is 

created and T3 is inserted. This new ring is identified by <a,{T1,T2,T3}>. We have the 

new ring structure of Figure 7(c). 

4.4. Matching rules 

In this section, we define the rules which are used in the matching phase to find locally 

possible action offers for a given a-tree. Through these rules, which are similar to those 

of Section 3.2, the local system can not only determine whether a given action offer is 

local or global, but also determine the rendezvous relations (rings) to which a given 

global action offer relates. The idea is that each offer is associated with a tuple <g, T> 

which denotes a rendezvous relation (see Section 4.3.2). The attribute evaluation rules of 

Section 3.2 are modified to match offers and also to evaluate related rendezvous 

relations. When an offer of a possible action is found, by comparing the tuple <g, T> 

with ring identifiers of the local system, one can identify whether it is local or global, and 

also the rings to which it relates.  

The following table shows the rules. An offer is in a form <og, <g, T>>, where og is an 

ordinary offer for gate g (see Section 3) and <g, T> denotes a rendezvous relation. We 

introduce a specific kind of offer anything to  the Rf-node or Rs-nodes. The two 

functions matched_r and derived_r are defined based on the two functions matched 

and derived of Section 3.2. 

Modified attribute evaluation rules for a-tree Tlocal 

For leaf nodes: 

Ag(B) = {<anything,<g,{Ts}>>} if B is Rs-node and B = Ts.Gs and g�Gs 

Ag(B) = if B is Rs-node and B = Ts.Gs and g�Gs 

Astop(stop) = 
Aexit(exit) ={<oexit,<exit,{Tlocal}>>} 

Ag(g;B) ={<og,<g,{Tlocal}>>}  

Ag(B) = if B is non-terminal node 

For internal nodes: 

Ag(B) = Ag(B1) if B B1>>B2 
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Ag(B) = Ag(B1)Ag(B2) if B B1 [] B2 

Ag(B) = Ag(B1)Ag(B2) if B B1 |S| B2 and (g�S and g≠exit) 

Ag(B) = {<og,<g,T>> | og=derived_r(o1g, o2g) and  

 matched_r(o1g, o2g) and T= T1T2 and  

 <o1g,<g,T1>>�Ag(B1) and <o2g,<g,T2>>�Ag(B2) } 

 if B B1 |S| B2 and (g�S or g=exit) 

Ag(B) = Ag(B1)Ag(B2) if B B1 [> B2 

Ag(B) = Ag(B1) if B  B1 and B is Rf-node and B = Tf.Gf and g�Gf 

Ag(B) ={<og,<g, T>> | og=o1g) and T= {Tf}T1  

                  and <ol1g, <g, T1>> �Ag(B1)} 

  if B  B1 and B is Rf-node and B = Tf.Gf and g�Gf 

The definition of the function matched_r: 

1) matched_r(anything, oj ) = true 

2) matched_r(oi,  anything) = true 

3) matched_r(oi,  oj) = matched(oi, oj) 

The definition of the function derived_r: 

1) derived_r(anything,  oj) = oj  

2) derived_r(oi, anything) = oi 

3) derived_r(oi,  oj) = derived(oi, oj) 

Let ROOT denote the root of the a-tree Tlocal. Then Ag(ROOT) represents the set of 

locally possible actions. If <og, <g, {Tlocal}>>� Ag(ROOT), then og is a local action 

offer. If <og, <g, T>>� Ag(ROOT) and there is more than one element in T, then og is a 

global action offer which relates to the ring locally identified as <g, T>. For example, by 
applying the rules above to the a-tree T1 in Figure 7(f), we have Aa(N1)={<a?x:int , <a, 

{T1,T2}>>, <a?y:int, <a, {T1,T2,T3}>>}. We see that the offer a?x:int relates to the 

ring a.0 identified by <a, {T1,T2}> , and the offer a?y:int relates to the ring a.1 

identified by <a, {T1,T2,T3}>> (see Section 4.3). 

5. Implementation 

The general structure of our system is shown in Figure 1. The functions of its 

components are described in Sections 2 and 4. In this section we describe an 

implementation of these concepts in an environment of several  UNIX work-stations 

connected by a local area network. The major part of the system is programmed in 
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Prolog, and the Transport service provided by Unix Socket is used for the communication 

among Prolog programs at different sites. 

The execution of a LOTOS specification proceeds in several phase. First, the user has to 

partition the LOTOS specification. For this purpose, he/she may use the special pre-

defined data type move in the LOTOS specification. The data type move supports the 

operations such as not_moving, moving, address1, ..., addressn which are interpreted 

by the system. A process definition containing a parameter of type move indicates that 

instances of the process could move to a remote site for execution. For example, in the 

following specification, the definition of process P contains a parameter of type move; its 

instance P[g](not_moving) will be kept at the local site; its instance P[a](moving) will 

be executed on a remote site which is selected by the system; and its instance 

P[a](address) will be executed on the site whose address is address. 

specification Spec[a] := 

behavior P[a](not_moving) || P[a](moving) || P[a](address) || (a; exit) 

where 

process P[a](m: move):= a; i; exit  endproc 

endspec 

Second, the specification is compiled by the ISLA compiler [Logr 88] into an internal 

Prolog representation. Third, the user defines the number of sites in the system. Then 

he/she initializes the system by loading at each site a copy of the internal Prolog 

representation of the specification. The execution is initiated at one site and is later 

propagated to the other sites in the system, as explained in Section 4. 

5.1. The implementation of Local LOTOS Execution Engine (LLEE) 

5.1.1. The implementation of LOTOS Execution (LE) 

The LE is implemented based on the execution model described of Section 3. It consists 

of two parts: a data part and a control part.  The data part, which is SVELDA developed 

by Ottawa University [Logr 88],  handles the data part of LOTOS. The control part 

handles the control part of LOTOS. It implements the three phases of growing, matching 

and updating (see Section 3). 

We use a set of dynamic  Prolog clauses (facts) to implement the a-tree. Each of these 

dynamic clauses corresponds to a node in the tree, and contains information such as the 
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type of the node (terminal, non-terminal, Rs-node, Rf-node, ...), the behavior associated 

with the node, and the list of attributes assigned to the node at some stage of execution. 

The organization of an a-tree as a set of related clauses makes it more accessible and 

quite controllable. Our system supports different growing strategies such as depth-first, 

breadth-first and a combined strategy. The following parameters determine the growing 

strategy: 

 - the sub-list of non-terminal nodes to be expanded, 

 - the order in which these non-terminal nodes should be expanded 

 - the level of expansion for each non-terminal node. 

5.1.2. The implementation of Distributed Coordination (DC) 

The DC component is implemented based on the distributed execution model described 

in Section 4. It consists of three procedures: Distribution , Ring Establishment and Local 

Rendezvous Manager (LRM). 

The function of the Distribution procedure is to distribute sub-specifications onto 

different sites in the system in a dynamic mode or in a static mode (see Section 2). It is 

called by the system when a non-terminal node, which represents a sub-specification to 

be executed in a remote site, is found in the growing phase. In the dynamic distribution 

mode, the Distribution consults the Allocation Management component (see Figure 1) for 

a free site.  

 

The Ring Establishment procedure  is called when the system distributes sub-

specifications. It evaluates rendezvous relation attributes and establishes rings by 

applying the algorithm of Section 4.3.3. To facilitate the manipulation of the duplication 

of rings in our implementation, we consider that a link (arc) between two sites may 

belong to more than one ring. Thus, to duplicate a ring, the site may simply duplicate the 

link to the next neighbor. To do this, a special naming scheme was designed for rings in 

our implementation, which will not be discussed here.  

The LRM does two things: It chooses a local action for execution and communicates with 

the SE component for the execution of global actions (see Section 2).  The LRM applies 

the matching rules of Section 4.4 to identify a global action offer and the related ring. 

When communicating with the SE, the LRM sends all the possible global action offers to 

the SE together with related ring identifiers. 
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5.2. Allocation Management  

Allocation management is concerned with allocating the different parts of a given 

specification onto the different sites for execution. It involves two basic questions: how 

to partition a system into sub-systems and how to distribute these sub-systems within a 

given distributed environment. The partitioning may have a strong impact on the overall 

efficiency of the system, due to the relatively low speed of inter-site communication 

compared with the communication within a single site. One can have different kinds of 

allocation schemes. For an automated solution, the system given a specification and a 

distributed environment, automatically partitions the specification to gain the best 

performance. It is clear that this is not an easy question. The partitioning can also be done 

by the designer, because he/she may have better knowledge about the specified system. 

One has a static solution if any decision is made before the initialization; this is easy to 

implement. One has dynamic solution if decisions are made at run-time; this provides 

more flexibility. 

Our implementation assumes that the user partitions the LOTOS specification before its 

execution. The distribution can be done in two modes: static and dynamic, as discussed in 

Section 2. The static mode is straight forward to implement. For the dynamic distribution, 

we have built a centralized allocation manager which records the free LLEE's in the 

system and allocates them to new sub-specifications according to the requests received 

from the active LLEE's.  

The function of the central allocation manager could be implemented in a distributed 

manner. It could also apply some more sophisticated allocation strategy to improve 

system performance. In our system, a site manipulates only one a-tree at a time. We have 

not perused these questions further in our implementation. 

5.3. Implementation of the distributed multi-way rendezvous  

For the implementation of the distributed multi-way rendezvous, we use the algorithm of 

[Gao 89]. The algorithm has been formally specified in the specification language 

Estelle. It then has been simulated using a simulation tool called VEDA [Jard 85b] in 

order to validate the protocol [Gao 91]. The algorithm will be implemented in C code 

using a semi-automated translation approach [Boch 87h]. On a given site, an entity of the 

algorithm (a SE of Figure 1) communicates with a local execution model of Section 4 (an 

LLEE of Figure 1) through UNIX sockets. 
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For debugging the implementation of the LLEE's, we designed a Central Rendezvous 

Manager which simulates the function of the distributed multi-way rendezvous algorithm 

in a centralized manner. It is a Prolog program and communicates with the LLEE's in the 

system through UNIX sockets. The interface between the Central Rendezvous Manager 

and the LLEE's is exactly same as between the SE's and the LLEE's.  

5.4. Practical Experiments 

The LLEE's work properly in an environment with a Central Rendezvous Manager. We 

have successfully executed a LOTOS specification of the dining philosophers in a 

distributed environment involving eight sites.  

6.  Conclusions 

We presented a new solution for the distributed implementation of LOTOS 

specifications. Our system consists of two functional parts, one handles the behavior of 

LOTOS specifications locally and the other deals with synchronization. There is a clear 

and simple interface between them and they work independently. In our system, sub-

specifications which are executed in different place are treated equally, that is, there is no 

master-slave relationship between different sites.  We introduce the concept of a-trees to 

execute LOTOS specifications. It has the advantage of being easy to control and can deal 

with non-well-guarded expression of LOTOS (see [Wu 90]). Ring structures are used to 

represent rendezvous relations between sub-specifications. Distributed synchronization 

algorithms, based on ring structures, are used to synchronize sub-specifications. The 

distribution of sub-specifications can be done at run-time and allows for various 

allocation strategies. A prototype of this system has been implemented and has been used 

for certain experiments. 

A related interesting question is the execution of LOTOS specification with fairness. The 

concepts of process fairness, alternatives fairness and channel fairness have been defined 

for LOTOS in [Wu  91]. The fair execution of LOTOS expressions, based on the activity 

tree,  is also described for a centralized environment. The distributed implementation of 

fairness is more difficult to realize. It depends on a fair distributed rendezvous algorithm 

[Atti90] [Wu 91c]. The algorithm of [Gao 89] respects fairness in a probabilistic manner, 

based on random choice. This question needs further study. 

Other interesting issues are related to the problem of partitioning a given specification 

into several components that could be executed at different sites, and the question of 
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allocating the different components, possibly dynamically depending on the requirements 

of the data being processed. The system described here provides a framework in which 

different approaches to the partitionning and allocation problems can be explored. 

However, we have not addressed these problems in any specific terms. Futher work 

would be useful in this area. 

We also need to study the performance aspects of our system. The question relates with 

aspects such as: the styles of specifications, implementation strategies, etc. Because our 

system is designed for proto-typing, we only consider implementation-oriented  LOTOS 

specifications (that is, the structure of a specification reflects the structure of its 

implementation).  Further work is needed to evaluate different implementation strategies 

such as different distributed synchronization algorithms, different strategies of 

manipulating of trees (i.e. growing, matching and updating of trees) against different 

implementation environments. 
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